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An expedient method was developed for the synthesis of 1,4,5,6-tetrahydropyridines by radical cycliza-
tion protocol involving consecutive 1,5-hydrogen transfer and double bond isomerization process start-
ing from Baylis–Hillman adducts.
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Radical cyclizations have been used for the synthesis of various
cyclic compounds. In some instances initial radical species under-
went 1,n-H transfer to form another radical before cyclization reac-
tion.1,2 Among the 1,n-H transfers, 1,5- and 1,6-H transfers are the
most common.1,2 Very recently we observed an interesting radical
cyclization procedure for the synthesis of tricyclic lactam deriva-
tives involving 1,5-H transfer and concomitant isomerization.1a

Suitably substituted dihydro- and tetrahydropyridine deriva-
tives have been regarded as important synthetic intermediates
for the synthesis of various important compounds.3 Especially,
1,4,5,6-tetrahydropyridine derivative A has been used for the syn-
thesis of antidepressant drug paroxetine (B)4 and many paroxe-
tine-like PSSRIs (phenylpiperidine selective Serotonin reuptake
inhibitors) including femoxetine (B0).4,5 In addition, many 1,2,5,6-
tetrahydropyridine derivatives C have been reported as renin
inhibitors ( Fig. 1).5 During our recent studies on the chemical
transformations of Baylis–Hillman adducts,6,7 we imagined that
we could synthesize tetrahydropyridine skeleton4,5 via the radical
cyclization of 4a–e as in Scheme 1. N-Tosyl-N-allyl derivatives
4a–e were prepared in good to moderate yields from the acetates
of Baylis–Hillman adducts 1a and 1b as summarized in Scheme 2
in two steps.7,8

With the substrates 4a–e we examined the radical cyclization
reaction under the conditions of n-Bu3SnH (1.2 equiv)/AIBN in
refluxing benzene.7 As expected, we obtained 1,4,5,6-tetrahydro-
pyridines 5a–e in good to moderate yields (56–82%) in short time
(Table 1).9 Compounds having two stereogenic centers including
5a, 5c, and 5d were isolated as their syn/anti diastereomeric mix-
ll rights reserved.
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ture in a ratio of 3:2–4:1. However, we could not separate each iso-
mer in their pure form. The mechanism for the formation of 5 could
be regarded as in Scheme 1: (i) 1,5-hydrogen transfer from the ini-
tial radical (I) to form (II),1a isomerization to more stable benzylic
radical (III), the following cyclization in a 6-exo-trig mode to (IV),
and final hydrogen radical abstraction to 5.

However, the reaction of N-benzyl derivative 4f showed low
yield of product 5f (38%) under the same conditions (1.2 equiv of
n-Bu3SnH) due to the formation of many intractable side products.
Fortunately, we obtained 5f in an improved yield (76%) when we
used n-Bu3SnH in excess amounts (2.5 equiv) presumably due to
rapid hydrogen abstraction of the corresponding radical intermedi-
ate (IV) from n-Bu3SnH (Scheme 3). Similarly, the reaction of N-
phenyl derivative 4g showed similar pattern. When we used 1.2–
1.5 equiv of n-Bu3SnH, pyrrolidine derivative 6 was formed in
appreciable amounts with low yield of 5g. The desired compound
5g was isolated in moderate yield (50%) with 2.5 equiv of n-
Bu3SnH, together with pyrrolidine derivative 6 in 21% yield as a
syn/anti (1:1) mixture (Scheme 4). The formation of 6 could be ex-
plained as sequential hydrostannylation at the allyl group10 and
following radical cyclization in a 5-exo-trig mode. The reduction
of bromophenyl moiety might occur independently with excess
Bu3SnH. Compound 6 was also prepared from 4g0 under the same
conditions (2.5 equiv of n-Bu3SnH) in good yield (77%). We
obtained compounds 5h (31%) and 7 (24%) from the reaction of
N-methallyl derivative 4h, similarly. In the reaction, two minor
compounds 8 (12%) and 9 (28%) were isolated together as side
products and we did not confirm the geometry of double bond
Scheme 5.

In summary, we disclosed an efficient synthetic way for 1,4,5,6-
tetrahydropyridines by radical cyclization protocol involving
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Table 1
Synthesis of tetrahydropyridine derivatives

Entry Conditionsa Substrate 4 (%) Conditionsb (h) Product 5 (%)

1 2a + 3a ,6 h 4a (80) 2 5a (72, syn/anti = 2:3)c

2 2a + 3b, 4 h 4b (93) 1 5b (70)
3 2a + 3c, 3 h 4c (80) 2 5c (82, syn/anti = 2:3)c

4 2a + 3d, 24 h 4d (87) 2 5d (80, syn/anti = 1:4)c

5 2b + 3b, 4 h 4e (92) 3 5e (56)

a Conditions: Compound 2 (1.0 mmol), compound 3 (1.5 mmol), K2CO3 (1.2 equiv), DMF, rt.
b Conditions: Substrate 4 (0.5 mmol), n-Bu3SnH (0.6 mmol), AIBN (cat) benzene, reflux.
c The ratio of syn/anti was determined in 1H NMR and is arbitrary.
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consecutive 1,5-hydrogen transfer and double bond isomerization
process. Applications of this methodology are currently underway
for the synthesis of paroxetine derivatives having 5-alkyls.
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